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A new fast Fourier transform algorithm for real or half-complex (conjugate-symmetric) 
input data is described. Based on the decomposition of N (the iength of the transform! into 
mutually prime factors, the algorithm performs transforms in-place and without pre- or post- 
reordering of the data. With large-scale scientific computmg in mind, the emphasis is on 
reducing the number of additions required. Compared with the best available algorithm based 
on specializing the conventional FFT to the real/half-complex case, the number of mu!- 
tiplications is also reduced by about 50%. On the Cray X-MP, a transform package based on 
the new algorithm runs up to 20% faster than the previous fastest available routines. besides 
halving the storage requirements. c 198X .Acadenix Press. Inc 

1. INTRODUCTION 

Recently, a form of the complex FFT (fast Fourier transform) algorithm has been 
introduced which is not only self-sorting (both input and output data are naturally 
ordered) but also in-place (no additional work space is required), besides having a 
lower operation count than the conventional FFT procedure. The new algorithm is 
a descendant of that due to Good [4], via Kolba and Parks [6], and is referred to 
as the PF4 (prime factor algorithm) since it depends on the decomposition of N 
(the Iength of the transform) into mutually prime factors. 

The self-sorting in-place form was suggested by Burrus and Eschenbacher [2] 
and implemented by Rothweiler [7]. Temperton [13] modified the algorithm to 
simplify the indexing procedure and to reduce the number of additions rather than 
the number of multiplications. The implementation of the new algorithm on the 
Cray-1 was described in [ 141, where it was shown to save up to 32 % in CPU time 
compared with a conventional FFT routine (for multiple complex transforms), 
besides requiring only half the memory. 

Most applications of the FFT in computational fluid dynamics require trans- 
forms between real data in physical space and half-complex (conjugate-symmetricj 
data in transform space. Thus, we need to compute both 
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and its inverse, 
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.Y - I 
.xj= c z-kW~k, O<j,<N-1, 

k=O 

where mob. = exp(2k/N), the data .xj are real, and the complex Fourier coefficients zk 
satisfy the relationship z.%, ~ k = z:. 

In an earlier paper [ 111, the author showed how the self-sorting mixed-radix 
“conventional” complex FFT [9] could be specialized to the real/half-complex case. 
The present paper shows how the complex FFT algorithm of [13] may be 
specialized in a somewhat similar way. 

The development of the real/half-complex form of the new algorithm is described 
in Section 2. Details of the implementation are discussed in Sections 3 and 4. 
Section 5 presents detailed operation counts and comparisons with other real/half- 
complex transform algorithms. Finally, Section 6 presents the results of timing 
experiments on the Cray-1 and Cray X-MP. 

2. DEVELOPMENT OF THE NEW ALGORITHM 

A simple way of specializing the prime factor algorithm to the real/half-complex 
case would be to use the pre- or post-processing techniques of Cooley, Lewis, and 
Welch [3]. For example, to implement Eq. (1) for -Ye real (and N even) we could 
form the complex sequence 

perform a complex FFT of length N/2 (using the PFA), and recover the coefficients 
zk through a post-processing step which requires (2SN- 6) real additions and 
(N - 4) real multiplications. Alternatively, to transform two independent sets of real 
data xi and JI, we could form the complex sequence 

cj=.xj+i~j, O<j<N-1, 

use the PFA to perform a complex FFT of length N and obtain the corresponding 
Fourier coefficients through another post-processing step requiring (2N- 4) 
additions. If the conventional FFT algorithm is used for the complex transforms, 
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the operation count per real transform is very similar for these two procedures 
[I 11. If the PFA is used for the -complex transforms, the second alternative is 
slightly more efficient. 

Suppose then that we need to perform real to half-complex transforms of length 
M= 180 (for example, this is a typical value for current global numerical weather 
prediction models). Combining these transforms in pairs, using the PFA for com- 
plex transforms of length N= 180 together with the CooleyyLewis-Welch post- 
processing step, would cost 1916 real additions and 576 real multiplications per reai 
transform. For comparison, the conventional mixed-radix FFT specialized to tbe 
real/half-complex case by pruning redundant operations [ 1 l] takes I714 real 
additions and 938 real multiplications. Thus on a computer such as the Gay-1 or 
Cray X-MP, where all the multiplications within the FFT can be overlapped with 
additions and the CPU time depends only on the number of additions and memory 
references [lo]? combining the complex PFA with post-processing will take longer 
than the specialized real,half-complex transform routines already available L 1 I]~ 
Similar reasoning would apply on a Cyber 205 [ 121 and on the IBM 3090 Vector 
Facility [I ]. Within the present context, this option is therefore not worth pursuing 
further. 

The specialization of the conventional complex FFT algorithm to the realihalf- 
complex case [l 1 ] proceeded from the following observation: if the algorithm is 
applied to real input data, then about half the computation is redundant. At each 
stage, every complex result is either purely real or accompanied by its complex ccn- 
jugate. The algorithm can thus be “pruned” to remove the redundant operations. 
Since the self-sorting algorithm of [11] used a work array of the same size as the 
input data, it was possible to store the mixture of real and complex intermediate 
results in an orderly manner. 

If we apply the self-sorting in-place complex PFA of [ 13 ] te real input data. we 
again find that about half the computation is redundant, and in principle a similar 
pruning could be carried out. In practice however, three considerations .make this 
option difficult. First, we would like to retain the in-place property, which reduces 
our freedom in designing a convenient storage pattern for the mixture of real and 
complex intermediate results Second, the indexing, which depends on the Chinese 
Remainder Theorem [13]. does not lend itself readily to this special case; it 
becomes very difficult to keep track of the respective locations of the real and 
imaginary parts of each complex number. Third, a “pruned” version of the 
algorithm would require a lot of additional code: each stage of the algorithm 
(corresponding to a particular factor N; of N) would require code both for real 
transforms of length N( and for complex transforms of length N,. This last 
consideration weighed heavily since, in order to outperform the routines already 
available on the Cray, it would clearly be necessary to program the new al.gorithm 
in CAL (Cray Assembly Language). 

Thus, pruning the algorithm in this way was rejected as a viable option even 
though it can be shown that the operation count is favorable. Fortunately there is 
another way of pruning the algorithm, with the same operation count, which 
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retains the self-sorting in-place properties of the complex PFA together with most 
of its simplicity and elegance. 

To motivate the following discussion, it will be helpful first to reexpress the 
algorithm of [13] in terms of a matrix factorization. So, let W’.v be the DFT 
(discrete Fourier transform j matrix of order N; element (j, k) of w,V is w,j’, where 
the rows and columns of lV,V are indexed from 0 to N- 1. Omitting the scaling 
factor, Eq. (1) can then be written as 

where for the time being z and x are both assumed to be complex. 
The algorithm of [13] made use of the following idea: define WC” to be the 

matrix with element (j, X-) given by 0,; jkr i e each element of IT,, is raised to the , . ., 
power r. If r is mutually prime to IZ then I?‘:‘] is just W,, with the rows permuted. In 
this case the transform defined by the matrix @‘:‘I is referred to in [13] as a rotated 
transform. The use of these rotated transforms permits the algorithm of [13] to be 
self-sorting as well as in-place, using a very simple indexing scheme. (The same 
indexing scheme could be used without the rotations to give an algorithm which 
would be in-place but not self-sorting.) 

Now, suppose N = N, N, . . . Nk where the factors Nj are mutually prime. Then the 
algorithm of [13] is equivalent to the factorization 

where x denotes the Kronecker product. P,,, is a permutation matrix which maps 
the one-dimensional data array of length N into a k-dimensional array via the 
Chinese Remainder Theorem mapping [13]. The Kronecker product of rotated 
DFT matrices simply represents a k-dimensional DFT of this data, except that the 
transform in each dimension includes the effect of the rotation ri. Finally, Pi’ maps 
the k-dimensional array back into a one-dimensional array of results. There is no 
need to apply the permutations P.,, and P,y’ explicitly to the data; the mapping is 
achieved implicitly by the simple indexing scheme developed in [13]. 

In order to perform the short (“small+“) rotated transforms of length Ni in 
Eq. (3), a set of DFT modules is provided in the code for implementing the trans- 
form algorithm. The set of allotiable values of Ni was (2, 3, 4, 5, 7, 8, 9, 16}, as in 
most published work on PFA algorithms. The required rotations can be achieved 
by appropriately setting the values of certain multiplier constants in the small-n 
DFT algorithms [13, 151. 

Now, it turns out that each of the rotated DFT modules can be factorized as 

where the elements of V,$‘l are a/l real numbers and X,, is a “folding” matrix, 
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(n even). 

Thus the “hard” part of the rotated corqlex transform of length r~ is contained in 
the real matrix VL’J. In fact, not all the DFT modules as described in [ 131 were of 
this form; some had to be redesigned for the purposes of specializing the algorithm 
to the real,‘half-complex case. In the process, the algorithms for ,Vi= 7, 8, 5. iS 
were slightly improved. 

An account of the redesign procedure is given in a separate paper [15]. cogether 
with a compiete specification of the new DFT modules. Although the modules given 
in [15] are for multiplication by WL’l, where element (j, k) of H’k’l is UC’, they are 
easily applied to the present case by noting that 
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The significance of Eq. (4) will now become apparent. If we substitute this 
factorization into Eq. (3), we obtain 

w,\r = P;‘((X,, q!;‘, x . . . x (X, v.p, x (X,., I’p’ .: , ))PY. (5) 

Using the algebra of Kronecker products, Eq. (5) becomes 

cv,w=P,‘(x,h,kx ... XXy2XXN,)(VyX ..’ x vpx qqP,. (6) 

Since P,P,;’ is just the identity matrix of order N, we can finally write Eq. (6) as 

where 

and 

(8) 

(9) 

Suppose we wish to compute z = Ft”,x. Using Eq. (7), we can first calculate 

y= P,"X (10) 

and then 

z=Y,vy. (11) 

This is true whether the input data x is complex or real. Now, since the V-matrices 
in Eq. (9) are all real, P, will also be real. If the input data vector x is complex, 
then the partial transform in Eq. (10) will amount to a separate transform of the 
real and imaginary parts of x, which will not start to interact until Eq. ( 1 I) is 
implemented. If on the other hand the input data vector x is real, then the inter- 
mediate vector y will also be real and the partial transform (10) will take just half 
the work of the complex case. Nevertheless the “hard” part of the transform will 
already have been done, and it remains only to apply the Kronecker product x,v of 
the folding matrices to produce the linal results. 

In the following section, Eqs. (10) and (11) will be called respectively the 
“V-stage” and the “X-stage” of the algorithm. 

3. IMPLEMENTATION 

(a) The V-stage 

In the V-stage of the algorithm, we multiply the real input data vector x by the 
matrix P, to produce the real intermediate result vector y. The factorization of the 
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matrix 8, is given by Eq. (9). and we see that it has the same form as the fac- 
torization of the matrix IvJv given in Eq. (3), except that the complex matrices IF’,r;I 
have been replaced by the real matrices “,F’,‘l. P,, is the same permutation matrix as 
before, mapping the one-dimensional input data array (now real) into a k-dimen- 
sional array via the CRT. The Kronecker product of I/-matrices in E.q. ~9) 
represents a k-dimensional partial transform with real outputs. Again there is no 
need to apply the permutations P.v and Pyi explicitly to the data; the required 
mapping is achieved implicitly by the indexing scheme of [ 131. Finally, algorithms 
for each of the “small-n” partial transforms I’;‘] can be obtained from the 
corresponding algorithms for I?‘krl = X,, I’:‘] developed in [ 151, simply by deleting 
the “‘Y-part of the algorithm specification. 

The IT-stage thus consists of k substages corresponding to the k factors !i, 
( 1 d id k) of N. Each of these substages consists of LV:N, ‘“small-n” partial trans- 
forms of length .R = ,Vi. The numbers of real additions .4(X,), real rnuit~pli~a~~o~s 
,W(N,) and logical operations (sign bit manipulations when N, is a power of 2) for 
these transforms are summarized in Table I for each of the values of NI catered for 
in the prime factor algorithm. These operation counts include the latest 
improvements described in [ 151. The output from each of the short parlial trans- 
forms can overwrite the corresponding input, and as explained previously the per- 
mutation is accounted for by the indexing logic, so no extra physical data transfer is 
necessary. Consequently, the entire Y-stage of the algorithm can be done in-place. 

The total operation count for the v-stage may be obtained from the information 
given in Table I. If N= N,N, ... N,, then the number of real additions is 

A(N)= f (N.‘iV;) A(lVil 
i=l 

while the ntimber of real multiplications is 

M(N) = i: (N/N;) M(N;). 
I= I 

TABLE I 

Real Operation Counts for Multipkation bq Vcl 

Additions Multiplications Logical 
,v, A(N,) M( .Y, ) operations 

3 2 0 0 

; 4 6 0 7 1 
5 12 6 
I 24 16 
8 20 2 2 
9 32 13 

16 58 12 5 
- 
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(b) The X-stage 

In the X-stage of the algorithm, we multiply the real intermediate result vector y 
by the matrix F, to produce the “half-complex” final result vector z. The elements 
of z satisfy the complex conjugate symmetry relationship 

m * 
&,y-i=zj) O<j<N- 1, (12) 

so that it is only necessary to compute and store zj for 0 < j < N/2. Moreover z0 is 
real, as is z,~,,~ if N is even. It will be shown that a convenient storage pattern for the 
results, which permits in-place computation, is the following. If zj= aj+ ib, 
(a,, b,real) then the coefficients will be stored in the order 

a,, al, a,, -., ahi 1, aMv b M ~ I , b,,- 2, . . . . b23 b,, 

where M = NJ2 is even, while M = (N + 1)/2 and aM is absent if N is odd. Hence 
each imaginary part bj will occupy the space vacated by the corresponding 
redundant coefficient z~:%. 

As defined by Eq. (8) X, is the Kronecker product of the “folding” matrices X,,, 
1 <idk (where N=N,N, . . . Nk), applied to the k-dimensional array obtained via 
the Chinese Remainder Theorem (CRT) mapping. To explain the implementation 
of this stage of the algorithm, it will be helpful to take a “geometrical” viewpoint 
and to consider a specific example. 

Figure 1 shows in a graphical form the CRT mapping for N = 60 where N, = 5, 
N, = 4, and N3 = 3. Each integer n (0 d n < N- 1) is mapped into a triplet 
(n1, nz, 1~~) (0 < 12~ < Nj - 1, 1 < i 6 3) giving a set of coordinates in the three-dimen- 
sional array. The mapping is defined [ 131 by 

ni=rz modulo N;, ldid3. (13) 

Notice that this mapping has a useful symmetry property. Let the coordinates of II 
be (n,,n2, n,) and define fi=N-n with coordinates (G,, rZZ, G3). Then from 
Eq. (13) it follows that 

ii,=0 if lli=O 
1 Gid3. 

ii;= Ni-n; if ni>O 
(14) 

This symmetry property, coupied with the storage pattern described above for the 
real and imaginary parts of the results, is the key to retaining the self-sorting and 
in-place properties of the complex PFA [13] when specializing it to the real/half- 
complex case. 

In the present example, multiplication of the intermediate real vector y by the 
matrix TGo is equivalent to (logically) arranging the elements of y in the three- 
dimensional array depicted in Fig. 1, then applying the “folding” matrices X,, X,, 
and X5 along each of the coordinate directions appropriately; these three 
operations can be done in any order. 
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FIG. i. The Chinese Remainder Theorem mapping for A’= 60 ( Ni = 5. ?i, = 4, N, = 3 ). 

We now consider the effect of each of these folding operations. This is most 
succinctly described by means of a diagram, as in Fig. 2. To describe the effect of 
each folding, we slice the three-dimensional array of Fig. 1 into planes perpen- 
dicular to the folding direction. Thus, X, couples the “horizontal” planes Q, and 
Q?, leaving Q0 unchanged. X4 couples the planes RI and R,, leaving R, and Rz 
unchanged. Xj couples S1 with S4 and S, with S,, leaving S, unchanged. 

If we applied these folding operations one after the other, starting with an array 
of N real numbers, we would produce a final array of N complex numbers of -which 
half would be redundant because of conjugate-symmetry. To maintain the in-place 
property of the algorithm and to eliminate the redundant computation, we adopt a 
more subtle strategy. 

First, notice that there are two points which are not changed by any of the 
folding operations, namely the intersections Q, n R, n So (n = 0) and Q,, n R, n S, 
(n = 30 = N/2 j. As might be anticipated, these are precisely the two elements of the 
final result vector z which are purely real, and they are already in their correct 
locations. 

Next, consider those points which are only changed by one of the folding 
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1_ RI-iR, 

1c-T 

FIG. 2. The effect of applying the folding operations .Y3. A’,, and X5 in the .I’-stage of the algorithm 

for N = 60. 

operations, for example X,. Such points will come in pairs, e.g. (12,48) and (36, 24) 
(see Fig. 1). In the first case, after the folding we will have 

Since y,> and yd8 are both real, z~~=z& as expected from Eq. (13). Hence zb8 is 
redundant; instead we store the real part of zi2 in location 12 and the imaginary 
part in location 48, and from Eq. (15) we see that they are already correctly located. 
In the second case, the folding gives 

=36 = 1)36 + I)‘24 

=2J = -1’36 - I)“24. 
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This case is slightly different in that r.76 is the redundant member of the pair: to 
obtain the specified orderin, 0 of the results it is necessary to exchange the contents 
of locations 24 and 36, changing the sign of the imaginary part in the process. 

The three-dimensional array of Fig. 1 contains a number of such pairs of points 
which are changed by only one of the folding operations. In a corresponding 
k-dimensional array, any such point must have (k - 1) of its coordinates zero, 
except that if one of the N,‘s is even (e.g.. N2 = 4 in the present example;, the 
corresponding coordinate may be either zero or N,!2. (Note that since the iV,‘s musr 
be mutually prime, at most one of them can be even.) To complete the Iist f<>;,r 
h’=60, the remaining pairs are (4.5, 1.5), (40, IO), (6, 54), (42, 18). and (10. 50). 
The fact that all these pairs are of the form (rz, N- rz!, which permits the com- 
putation to be done in-place, is a result of the symmetry property (14). 

Now consider those points which are changed by only two of the three folding 
operations. Such points will come in groups of 4; e.g., in the present example the 
group (21, 9, 39. 51 j are unchanged by X, but interact with each other through X, 
and X,. Thanks to the symmetry property (14). each such group of points, forming 
the vertices of a rectangle in Fig. 1. is of the form (IL c’, Ai- II, N- 12’ I. 8y 
considering each such group separately, it is easy to keep track of the redundancies 
due to conjugate-symmetry, and to overwrite the corresponding elements of the 
intermediate real vector y with the appropriately stored elements of the hal- 
complex result vector 2. 

Finally, consider those points which are changed by ail three of the foiding 
operations. Such points will come in groups of eight, forming the vertices of a 
cuboid in Fig. 1. Again the symmetry property (14) guarantees that if the point ir is 
a vertex of the cuboid, then the opposite vertex corresponds to the point iv-~. 
treating the complete three-dimensional folding operation on each such cuboid in 
turn, the computation can again be done in place. 

The example N = 60 = 5 x 4 x 3 requires a three-dimensional representation of the 
X-stage of the algorithm. The set of DFT modules provided for the I’Y-srage, 
corresponding to allowable factors Ni of NV permits up to 4 mutualiy prime factors. 
Therefore, the implementation of the X-stage also includes provision for four- 
dimensional folding on hypercuboids with 16 vertices. 

As described earlier, the indexing for the IT-stage of the algorithm is quite 

TABLE II 

Numbers of Vertices and Real Additions for Folding Operations 

Dimension 

L (pair) 
2 f rectangle) 
3 (cuboid) 
4 (hypercuboid j 

Vertices 

2 
2) 
8 

I6 

Additions 

c! 
1 

16 
48 
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straightforward. No such simple solution was found for the X-stage, and it must be 
admitted that this is the least elegant part of the implementation. Code is provided 
for folding on lines, rectangles, cuboids, and hypercuboids, and for indexing 
purposes it was found necessary to use a precomputed address list containing the 
locations of the “vertices.” By supplying separate input and output address lists, the 
same code can be used either to compute the results in-place as described above, or 
alternatively to write the results into another array with any chosen storage pattern. 

For each category of folding, the numbers of vertices and real additions is given 
in Table II. To determine the contribution of the X-stage to the total operation 
count for a given value of N, using the information in Table II, we need to know 
the number of p-dimensional folding operations for each p. Explicit formulae for 
these numbers are given in the Appendix. 

4. INVERSE TRANSFORMS 

In Sections 2 and 3, we have developed an algorithm to implement Eq. (1), with 
real input and conjugate-symmetric output. We will now sketch briefly the develop- 
ment of the corresponding inverse algorithm to implement Eq. (2), which may be 
written as 

x= w,z, (16) 

where element (j, k) of IV,V is o J$ The algorithm of [ 131 is equivalent to . 

w,= P,$(wp x . . . x WF;,' x W.$;'l) P,. 

As shown in [15], we can write 

wp = up x,r, 

(17j 

(18) 

where the elements of U,C’l are all real. 
Substituting (18) into (17), we obtain the following analog of Eq. (7): 

w,hr = 0, z.; ) 

where 

ON= P,yu@'x . . . x U&J'x U&')P,. 

Thus Eq. (16) is implemented by a two-stage process, 

y = F,Gz, 

followed by 
x = 0, y. 

(19) 

(20) 

(21) 

(22) 
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If the input data z is conjugate-symmetric, then the intermediate vector y is real. 
Implementing Eq. (21) is equivalent to inverting all the operations of the X-stage 
described in Section 3: the required program structure is very similar and uses the 
same address list for the “unfolding” operations which are now to be carried out. 
Implementing Eq. (22), using the decomposition of 0,. given in Eq. (ZO), is 
analogous to the V-stage of Section 3. The same indexing scheme can be used, 
together with the “small-n” partial transforms Uirl defined by Eq. (IS). The 
algorithms for these partial transforms may be derived either as outlined in [15], or 
by “inverting” the corresponding algorithms for multiplication by VLrl used in 
Section 3. 

For each stage of the inverse transform, the operation count is the same as for 
the corresponding stage of the forward transform. 

5. COMPARISON OF OPERATION COUNTS 

In Table III we show the number of real additions and multiplications required 
to compute a real/half-complex transform of length N, for a range of values of N 
and for four different algorithms. 

The first column of operation counts is for a “traditional” implementation in 
which a complex transform of length N/2 is followed by the post-processing step of 
Cooley, Lewis, and Welch [3]. The complex transform is assumed to be of the 

TABLE III 

Real Operation Counts (Additions,‘Multiplicationsj for Real/Half-complex Transforms of Length R’ 

2;’ 

Conventional: Conventional: 
complex N/2 specialized 

+ postprocessing to real case 

60 576.!288 4341232 
64 540,‘192 408,052 

120 1306,636 1016j522 
128 1344,,448 974/366 

180 2?16/1224 1714,‘928 
193 2 1 JO,‘960 1654/694 

240 2976,,1512 2364/1176 
256 2876,‘1152 23281984 

336 4552,‘2520 3692,!?048 
360 4886.‘2628 396412212 

504 7418.:4284 6196,!3844 
512 6396.:2560 5294,‘2222 

1008 16352:9576 13650;8190 
1024 14332,‘6144 12120!‘5464 

Winograd 

386::68 

920,‘133 

1778Z60 

2246,‘3 I6 

PFA 
- 

374,‘l i2 
- 

896:25J 

1558;496 

2090.‘628 

3800/478 3?90!1144 
4004;‘522 3564;1F62 

6672/786 5536;2662 

15892,‘1774 l2330~4628 
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conventional mixed-radix form as described in [9], with provision for radices 
(factors) 2, 3, 4, 5, and 7. 

The second column is for the algorithm described in [ 111, obtained by taking a 
complex mixed-radix transform of length N and pruning the redundant operations. 
In keeping with the strategy proposed in [ 111, N is now allowed to have one factor 
of 8 and any number of factors of 6 (e.g., 180 = 5 x 6 x 6 and 192 = 4 x 6 x 8). This 
provision of factor 6 allowed some of the gains due to the “prime factor” approach 
to be anticipated within the context of an otherwise more conventional algorithm. 
Comparing the first two columns shows that in moving from a “complex N/2 plus 
postprocessing” approach to a specialized real/half-complex transform algorithm, 
a saving of the order of 20% is realized in the numbers of both additions and 
multiplications, as previously documented in [ 111. 

While the algorithms in the first two columns can handle any N factorizable as 
N=3P3Y5”7J, those in the third and fourth columns can only handle a selection of 
values of N with p ~4, q < 2, r 6 1 and s 6 1. (In principle there is no such 
limitation, but in practice it would require either the design and coding of very 
large individual DFT modules+.g., for factors 25, 27, 32, . ..- or a judicious 
mixture of the conventional and prime factor algorithms. The latter approach might 
well be worth exploring.) 

The operation counts in the third column relate to a specialization of Winograd’s 
FFT algorithm [ 161 to real input data. Silverman [S] provides operation counts 
for this case, but close inspection reveals that not all the redundant additions have 
been “pruned” from the complex algorithm. The operation counts have thus been 
recalculated on the basis of an implementation similar to that briefly suggested by 
Johnson and Burrus [S]. The same starting point is used as for the prime factor 
algorithm described in the present paper, namely the factorization of the DFT 
matrix w, given by Eq. (7). The V-stage of the algorithm is then implemented by 
further factorizing each of the V-matrices in Eq. (9) in the form 

(23) 

where the ‘4, M, and B matrices are all real. Furthermore, all the additions are con- 
tained in the matrices A and B, while all the multiplications are contained in the 
diagonal matrix M (which in general will be of order greater than Ni, with A and B 
rectangular). Using the factorization (23), all the multiplications in the V-stage may 
be “nested” by rearranging the Kronecker product in Eq. (9), just as in the 
Winograd algorithm applied to complex data [8, lo]. The real/half-complex trans- 
form is then completed using the same X-stage as for the prime factor algorithm 
described in Section 3. 

Comparing the operation counts in the third column of Table III with those of 
the first two columns, we see a dramatic decrease in the number of multiplications 
required (down to between 1 and 2 real multiplications per point for the whole 
transform). However, for some values of N this is achieved at the expense of 
requiring more additions than the specialized conventional algorithm of the second 
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column. For FFTs on most large modern scientific computers, reducing the number 
of acirfitions is the most important consideration [lo], and for this reason the 
Winograd approach was not selected for implementation. (Other good reasons 
include greater program complexity, lack of an in-place capability, and 
considerations of traffic between memory and registers on the Gray-l [lo], which 
hoid equally for the complex and real/half-complex cases.) 

The operation counts in the fourth colmn of Table III are for the real.‘half- 
complex prime factor algorithm as described in this paper. Comparing with the 
second column (which might be taken as representing the previous “state-of-the- 
art”), we see a large saving (over 50% in some cases) in the number of 
multiplications, together with a smaller but nevertheless useful saving (of order 
10 % ) in the number of additions. In the following section we shall see how this 
theoretical improvement translates into a saving of CPU time in practice. 

6. TIMING RESULTS 

The algorithm described in this paper has been implemented in CAL (Gray 
Assembler Language), and run on both the Cray-1 and the Cray X-MP. It is inten- 
ded for use in numerical weather prediction models, where the requirement is 
usually to perform many transforms of the same length simultaneously. The 
simplest approach to vectorization is therefore appropriate, namely to perform 
the transforms “in parallel” with each vector consisting of one element from each 
transform, and the vector length being equal to the number of transforms. (For the 
more difficult problem of vectorizing a single transform. the Y-stage of Section 3 
may be vectorized in the same way as described for the corresponding complex 
transform in [14]. For the X-stage, it would be necessary to make use of the 
hardware scatter/gather feature on the Cray X-MP j. 

The package was first developed and tested on the Cray-1. On this machine. a 
few parts of the code run at less than maximum efficiency because of the single path 
between memory and vector registers. This was regarded as only a temporary 
disadvantage, since the real target machine was the Cray X-MP on which the code 
should run at close to maximum speed. 

Timing comparisons were made on both machines between the new code 
(RPFA) and the existing package known as FFT77. which was based on the 
conventional FFT specialized to the real/half-complex case by pruning redundant 
operations (operation counts as in column 2 of Table III ). FFT77 is a!so 
implemented in CAL and vectorized in the same way as the new package. Note 
however that while FFT77 could handle transf0rm.s of any length of the form 
N= 2”3+‘5’, no provision was included for factors of 7. 

In Table IV we present times per transform for the case in which 64 transforms 
are performed simultaneously, and for the same set of values of N (the length of the 
transforms) as in Table III. The times shown are averages between those for 
forward and inverse transforms. On the X-MP, the times are for a single processor. 
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TABLE IV 

Time in Microseconds for a Real:Half-complex Transform of Length N 

IV 

Cray-1 Cray X-MP 

FFT77 RPFA FFT77 RPFA 

60 
64 

120 
128 

180 
192 

240 
256 

336 
360 

504 
512 

1008 
1024 

7.64 
7.43 

16.2 
16.0 

26.8 
26.0 

36.6 
38.3 
- 

62.2 

84.2 

- 

195.8 

7.31 4.76 

15.0 10.4 

24.8 17.3 

33.5 

5.71 
5.35 

12.3 
11.8 

20.5 
19.4 

27.7 
28.2 

23.3 

52.2 
51.6 

80.4 

46.8 
36.4 
37.7 

58.5 
62.2 

176.7 128.7 
142.6 

On the Cray-1, the improvement is generally only rather modest, as expected 
from the considerations of memory-to-register traffic noted above. On the X-MP, 
the gain is consistently between 15% and 2076. In particular. if the freedom is 
available for a particular application, it may be worth changing from a power-of- 
two transform length (e.g., N= 256) to a nearby value which can be handled by the 
new package (e.g., N = 240). The ability of the new package to perform transforms 
in-place should also prove useful in situations where there is a shortage of available 
work space. 

Finally, the gain on the Cray-1 and Cray X-MP is a consequence primarily of the 
reduction in the number of additions. Since the number of multiplications is also 
reduced by 50%, the algorithm should also prove useful on a wide range of other 
machines, from mainframes down to PCs, where the number of floating-point 
multiplications contributes significantly to the cost. 

APPENDIX 

The following formulae specify the number of folding operations in each category 
for the x-stage of the algorithm. 

Suppose N = N, N, . . . N,, and let the number of p-dimensional folds be F(p). 
We have to consider two cases. 
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If N is odd, then: 

( pairs 1: 

(rectangles): F(2j= 1 C (w,-l)jfv-t)i4 
i= 1 t=i+ I 

nr - 2 111 - I n1 

(cuboids): F(3)= 1 1 2 (Iv- l)(iV,- 1 )(N,- I)/8 
i= 1 j=i+ 1 k-j+ 1 

m ~ 3 ,,I - 2 ,,I ~ 1 I,! 

(hypercuboids): F(4)= C C c x (N, - 1 )i N; - 1) 

If N is even, let N, be the even factor. Then: 

(pairs): 
PII 

F(l)=(N-2)j2+ C (N,- 1) 

nz ,,z ~ I i?! 

(rectangles ): F(2)=(N,-2) c (N,-1)/4+ 1 c (N-l)(ly-y2. 
j=2 i-2 i=i+ I 
m ~ I 171 

icuboids): F(3)=(N,-2) 1 c (N-l)(N,-1j:‘S 
j-1 k-j+1 

,,2 ~ 1 II, - 1 ,I, 

+c c c (lui-1)(N,-lj(h’,-1),;4 
i-2 j=~j+l k=j+l 

m ~ 1 IX I ,,I 

(hypercuboids): F(4) = (N, - 2) 1 C c ilk’,- l)(N,- l)(N,- l);:lS 
j=7 k=j+l I=k+L 

t?, - 3 ,,I - z ,,i ~~ I ,,I 

+c c c 1 (Iv- ljilv-1) 
i-2 j==i+l k-j+, /=k*L 

x(N,- 1)(-V,- 1)/8. 

ACKNOWLEDGMENTS 

The author wishes to thank David Parks of Gray Research Inc. for running the tests on tte 
Gray X-MP, Evhen Yakimiw for reviewing a first draft of this article, and Maryse Ferland for ryping the 
manuscript. 

REFERENCES 

1. R. C. AC~ARWAL AND J. W. COOLEY. ~~hf J. Res. ~~1~. 30, 145 (19861. 
2. C. S. BWRRUS AND P. W. ESCHENBACHER. IEEE Tram. Arotc~r. Speech Sigwl Process. 29, 806 ( 19X i !_ 



216 CLIVE TEMPEKTON 

3. J. W. COOLEY. P. A. W. LEWIS, AND P. D. WELCH, J. Sound Vib. 12, 315 (1970). 
4. I. J. GOOIJ, J. R. StaGst. Sac. Ser. B 20. 361 (1958). 
5. H. W. JOHNSON AND C. S. BURRUS, IEEE Trans. Acousr. Speech Signal Processing 31, 378 (1983). 
6. D. P. KOLBA .AND T. W. P.~RRs, IEEE Timu. Acousrics, Speech and Signal Process. 25, 251 (1977). 
7. J. H. ROTH~EILER, IEEE Tmns. Acoust. Speech Signal Process. 30. 105 (1982). 
8. H. F. SILVERMAN, IEEE Trans. Acorat. Speech Signal Process. 25, 152 (1977). 
9. C. TEMPERTON, J. Compur. Phys. 52, 1 ( 1983 ). 

10. C. TEMPERTON, J. Compur. P/Iw. 52, 198 (1983). 
11. C. TEMPEKTON. J. Compar. Plow 52, 340 ( 1983). 
12. C. TEMPERTON, “Fast Fourier Transforms on the Cyber 205,“ in High-Speed Compurarion, edited by 

J. S. Kowalik (Springer-Verlag, Berlin. 19&I), p. 403. 
13. C. TEMPERTON, J. Cornput. PIzys. 58, 283 (1985). 
14. C. TEMPERTON, Parallel Compuf., in press. 
15. C. TEMPERTON, J. Conzpur. Plqx. in press. 
16. S. WINOGRAD. Ma&. Conlput. 32, 175 (1978). 


